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Abstract

This paper present®cursive cavity modeling-a principled, tractable approach to approximate, nearnabt
inference for large Gauss-Markov random fields. The maim ideto subdivide the random field into smaller
subfields, constructingavity modelsvhich approximate these subfields. Each cavity model is aiseryet faithful
model for the surface of one subfield sufficient for nearsopti inference in adjacent subfields. This basic idea
leads to a tree-structured algorithm which recursivelydsua hierarchy of cavity models during an “upward pass”
and then builds a complementary sethdfnket modelgluring a reverse “downward pass.” The marginal statistics
of individual variables can then be approximated usingrtb&nket modelsModel thinningplays an important
role, allowing us to develop thinned cavity and blanket niedieereby providing tractable approximate inference.
We develop amaximum-entropyapproach that exploits certain tractable representatidriSisher information on
thin chordal graphs. Given the resulting set of thinnedtgawiodels, we also developfast preconditiongrwhich
provides a simple iterative method to compute optimal esis Thus, our overall approach combines recursive
inference, variational learning and iterative estimatife demonstrate the accuracy and scalability of this aghroa
in several challenging, large-scale remote sensing prmuble

. INTRODUCTION

Markov random fields (MRFs) play an important role for modelargl estimation in a wide variety of contexts
including physics [1], [2], communication and coding [3igrsal and image processing [4], [5], [6], [7], [8], [9].
pattern recognition [10] remote sensing [11], [12], [13nsor networks [14], and localization and mapping [15].
Their importance can be traced in some cases to underlyingigshgf the phenomenon being modeled, in others
to the spatially distributed nature of the sensors and cdéatipnal resources, and in essentially all cases to the
expressiveness of this model class. MRFsgmaphical modeld16], [17], that is, collections of random variables,
indexed by nodes of graphs, which satisfy certain graplegired conditional independence relations: Conditioned
on the values of the variables on any set of nodes that seghmgraph into two or more disconnected components,
the sets of values on those disconnected components araliputwdependent. An implication of this Markov
property—thanks to the Hammersley-Clifford Theorem [1&]Fis that the joint distribution of the variables at all
nodes can be compactly described in terms of “local” intdwas among variables at small, completely connected
subsets of nodes (thdiquesof the graph).

MRFs have another well recognized characteristic, namedy plerforming optimal inference on such models
can be prohibitively complex because of the implicit codimigthe global distribution in terms of many local
interactions. For this reason, most applications of MRFslies the use of suboptimal or approximate inference
methods, and many such methods have been developed [13],[22] [22]. In this paper we describe a new,
systematic approach, to approximately optimal inferermmeMRFs that focuses explicitly on propagating local
approximate models for subfields of the overall graphical ehddat are close (in a sense to be made precise) to
the exact models for these subfields but are far simpler arfdctrallow computationally tractable exact inference
with respect to these approximate models.

The building blocks for our approach—variable eliminatiorformation projections, and inference on cycle-free
graphs (that is, graphs that areeg—are well-known in the graphical model community. What éswhere is their
synthesis into a systematic procedure for computationidistable inference that focuses on recursive reduceerord
modeling(based on information-theoretic principles) and exaari@hce on the resulting set of approximate models.
The resulting algorithms also have attractive structureithaf potential value for distributed implementationsisuc
as in sensor networks. To be sure our approach has conreetitimn work of others—perhaps most significantly
with [23], [24], [25], [12], [26], [27], and we discuss theselationships as we proceed.
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Cambridge, MA 02139 (emaiKjasonj,willsky} @mit.edu). This research was funded by the Air Force Office of SciemRiéisearch under
Grant FA9550-04-1-0351 and by a grant from Shell Internationgl@&ation and Production, Inc.



While the principles for our approach apply to general MRFs fecus our development on the important class of
Gaussian MRFs (GMRFs). In the next section we introduce tlissgldiscuss the challenges in solving estimation
problems for such models, briefly review methods and liteeatalevant to these challenges and to our approach,
and provide a conceptual overview of our approach that alptaims its nameRecursive Cavity ModelinRCM).

In Section Il we develop the model-reduction techniquesiiregl by RCM. In particular, we develop a tractable
maximum-entropy method to compute information projediarsing convex optimization methods and tractable
representations of Fisher information for models defined @rddl graphs. In Section IV we provide the details
of the RCM methodology, which consists of a two-pass prosedor building cavity and blanket models and a
corresponding hierarchical preconditioner for iteratagtimation. Section V demonstrates the effectiveness of RCM
with its application to several remote sensing problems.cédfeclude in Section VI with a discussion of RCM and
further directions that it suggests.

II. PRELIMINARIES
A. Gaussian Markov Random Fields

Let G = (V, &) denote a graph with node (or vertex) sétand edge sef C V x V. Let x,, denote a random
variable associated with nodec V, and letx denote the vector of all of the,. If x is Gaussian with meaf
and invertible covarianc®, its probability density can be written as

p(x) o exp{—%(x )P (x— %)} eXp{—%XTJX +h'x} (1)
Jkx = h
P = J! (2)

The form on the right-hand side of (1) is often referred to asimifiormation formof the statistics of a Gaussian
process wherd is the information matrix The fill pattern ofJ provides the Markov structure [28% is Markov
with respect tog if and only if J,, , = 0 for all {u,v} & €.

In applicationsx andP typically specifyposterior statistics ofx after conditioning on some set of observations.
The most common example is one in which we have an original GMRIF respect tog, together with measure-
ments, corrupted by independent Gaussian noise, at somé afrthe nodes of the graph. Since an independent
measurement at node simply modifies the values af, andJ,,, the resulting field conditioned on all such
measurements is also Markov with respectjto

B. The Estimation Problem

Given J andh, we wish to compute and (at least) the diagonal elementsR-thus providing the marginal
distributions for each of the,. However solving the linear equations in (2) and invertingan run into scalability
problems. For example, methods that take no advantage phiged structure requiré)(n3) computations for
graphs withn nodes. If the grapl§ has particularly nice structure, however, very efficientoatlhms do exist.

In particular, if G is a tree there are a variety of algorithms which computend the diagonal oP with total
complexity that is linear inn and that also allow distributed computation correspondmgdmessages” being
passed along edges of the graph. For exampld, if tri-diagonal, the variables, form a Markov chain, and
efficient solution of (2) can be obtained by Gaussian elinimabf variables from one end of the chain to the
other followed by back-substitution—corresponding to enfird Kalman filtering sweep followed by a backward
Rauch-Tung-Striebel smoothing sweep [14].

Because of the abundance of applications involving MRFs aphyg with cycles, there is considerable interest
and a growing body of literature on computationally trat#dhference algorithms. For example, the generalization
of the Rauch-Tung-Striebel smoother to trees can in priaci@ applied to graphs with cycles by aggregating
nodes of the original graph—using so-called junction trig@réthms [17] to form an equivalent model on a tree.
However, the dimensions of variables at nodes in such a tregehdepend on the so-callétee-width of the
original graph [29], with overall inference complexity inMRFs that grows as the cube of this tree-width. Thus,

1A C++ implementation of the algorithms described in this paper is availalte tp: / / ssg. mi t . edu/ gr oup/ j ason;j .



these algorithms are tractable only for graphs with smak-width, precluding use for many graphs of practical
importance such as a 2Dx s lattice (with n = s? nodes) for which the tree-width is (so that the cube of the
tree-width isn3/2, resulting in complexity that grows faster than linearlyttwijraph size) or a 3B x s x s lattice

for which the tree-width iss® (so that the cube of the tree-width #g).

Since exact inference is only feasible for very particulaapips, there is great interest in algorithms that yield
approximations to the correct means and covariances ahtidia tractable complexity. One well-known algorithm
is loopy belief propagation (LBP) [30], [20] which take the ddnessage-passing rules which yield the exact solution
on trees, and apply them unchanged and iteratively to grafthscycles. There has been recent progress [31], [20]
in understanding how such algorithms behave, and for GMRIEsribw known [31], [22] that if LBP converges,
it yields the correct value fok but not the correct values for the, ,. Although some sufficient conditions for
convergence are known [31], [32], LBP does not always comvargd may converge slowly in large GMRFs.

There are several other classes of approximate algorithatsatk more closely related to our approach, and we
discuss these connections in the next subsection. As we eearide, RCM can be viewed as a direct, recursive
approximation of an exact (and hence intractable) infexreaigorithm created by aggregating nodes of the original
graph into a tree. In particular, by employing an informattbeoretic approach to reduced-order modeling, together
with a particular strategy for aggregating nodes, we capstractable, near-optimal algorithms that can be applied
successfully to very large graphs.

C. The Basic Elements of RCM

As with exact methods based on junction trees, RCM makes fuseparators—that is, sets of nodes which, if
removed from the graph, result in two or more disconnectedpoments. By Markovianity, the sets of variables in
each of these disconnected components are mutually indeptenonditioned on the set of values on the separator.
This suggests a “divide and conquer” approach to descriliiagpterall statistics of the MRF on a hierarchically-
organized tree. Each node in this tree corresponds to a sepataa different “scale” in the field. For example,
the root node of this tree might correspond to a separatdrstzarates the entire graph into, gaydisconnected
subgraphs. The root node then hWashildren—one corresponding to each of these disconneaibdraphs—
and the node for each of these children would then correspordseparator that further dissects that subgraph.
This continues to some finest level at which exact inferencepctations on the subgraphs at that level are
manageable. The problem with this approach, as suggestedciioiBd-B, is that the dimensionality associated
with the larger separators in our hierarchical tree can lie dngh—for instance,/n in square grids. This problem
has led several researchers [24], [7], [33], [34], [14] tvadep approaches for GMRFs based dimensionality
reduction—that is, replacing the high-dimensional vector of valuesi@ an entire separator by a lower-dimensional
vector. While approaches such as [33], [34] use statisgizabtivated criteria for choosing these approximations,
there are significant limitations of this idea. The first is tha tise of low-dimensional approximations can lead
to artifacts (that is, modeling errors which expose the dgiey approximation), both across and along these
separators. The second is that performing such a dimen#iomatiuction requires that we have available the
exact mean and covariance for the vector of variables whimserngion we wish to reduce, which is precisely the
intractable computation we wish to approximate! The thinditiation is that these approaches are strictly top-down
approaches—that is, they require establishing the hiei@acdecomposition from the root node on down to the
leaf nodesa priori, an approach often referred to mested dissectioWe also employ nested dissection in our
examples, but the RCM approach also offers the possibifityottom-up organization of computations, beginning
at nodes located close to each other and working outward-pabddy that is particularly appealing for distributed
sensor networks.

The key to RCM is the use of the implicit, information form, msponding tamodelsfor the variables along
separators, allowing us to consideodel-order—rather than dimensionality—reduction. In this way, wé sétain
full dimensionality of the variables along each separateercoming the problem of artifacts. Of course, we still
have to deal with the computational complexity of obtainthg information form of the statistics along each
separator. Doing that in a computationally and statidicatincipled fashion is one of the major components of
RCM. Consider a GMRF on the graph depicted in Fig. 4(a) so thatinformation matrix for this field has a
sparsity pattern defined by this graph. Suppose now that wddmnsolving forx and the diagonal of from
(2) by variable elimination In particular, suppose that we eliminate all of the vaegablvithin the dashed region



in Fig. 4(a) except for those right at the boundary. Doing thigeneral will lead tdill in the information matrix

for the set of variables that remain after variable elimorat As depicted in Fig. 4(b), this fill is completely
concentrated within the dashed region—that is, within dagity. That is, if we ignore the connections outside the
cavity, we have a model for the variables along the boundwatyis generally very densely connected. This suggests
approximating this high-order exact model for the boundayya reduced othinned model as in Fig. 4(c) with
the sparsity suggested by this figure. Indeed, if we thin thdehsufficiently, we can then continue the process of
alternating variable elimination and model thinning in anpatationally tractable manner.

Suppose next that there are a number of disjoint cavities d&gn4 in each of which we have performed
alternating steps of variable elimination to enlarge theétgeollowed by model thinning to maintain tractability.
Eventually, two or more of these cavities will reach a poinivaich they are adjacent to each other, as in Fig. 5(a).
At this point, the next step is one of merging these cavitige a larger one (Fig. 5(b)), eliminating the nodes
that are interior to the new, larger cavity (Fig. 5(c)), andrtlthinning this new model. If each step does sufficient
thinning, computational tractability can be maintainedelwally, this “outwards” elimination ends, and a reverse
“inwards” elimination procedure commences, again donenfarmation form. This inwards procedure eliminates
all of the variablesoutside of each subfield, except for the variables adjacent to the sdpfieoducing what
is known as alanket model Eliminating these variables involves computations thatirgively produce blanket
models for smaller and smaller subfields, as illustrated in Bjgwhich shows that, once again, model thinning
(going from Fig. 6(c) to Fig. 6(d)) plays a central role. Finalbnce this inward sweep has been completed, we
have information forms for the marginal statistics for ea€lhe subfields that were used to initialize the outwards
elimination procedure. Inverting these many smaller, hogalized models to obtain means and variances is then,
by construction, computationally tractable.

RCM has some relationships to other work as well as some aniat differences. The general conceptual form
we have outlined is closely related to the nested disse@jproach [23], [12] to solving large linear systems.
The approach to model thinning in [23], [12], however, is dynperoing a set of elements (retaining just those
elements which couple nearby nodes along the boundary). fhtistisal interpretation of this approach and its
extensibility to less regular lattices and fields, howeveg, groblematic. In particular, zeroing elements can lead
to indefinite (and hence meaningless) information matriaes, even if this is not the case, such an operation in
general will modifyall of the elements of the covariance matrix (including theamces of individual variables).

In contrast, we adopt a principled, statistical approacimtmlel thinning, using so-called information projections,
which guarantee that the means, variances and edgewisgatimms in the thinned model are unchanged by the
thinning process.

Information-theoretic approaches to approximating giegdhmodels have a significant literature [25], [35], [29],
[36], most of which focuses on doing this for a single, ovegehphical model and not in the context of a recursive
procedure such as we develop. One effort that has consi@deredursive approach is [26] which examines time-
recursive inference fdbynamic Bayes’ Nets (DBNsjthat is, for graphical models that evolve in time, so thacar
view the overall graphical model as a set of coupled tempstages.” Causal recursive filtering then corresponds
to propagating “frontiers"—that is, a particular choicewffiat we would call cavity boundaries corresponding to
the values at all nodes at a single point in time. The metho®@ projects each frontier model into a family
of factored models so that the projection is given by a proddianarginals on disjoint subsets of nodes. Such
an operation can be viewed as a special case of the “outwaogiagation of cavity models where nodes in the
boundary are required to be mutually independent. In ourcgmn, we instead adaptively thin the graphical model
by identifying and removing edges that correspond to weakditional dependencies so that the thinned models
typically do not become disconnected. Also, the other tveaneints of our approach—specifically, the hierarchical
structure which requires merging operations as in Fig. 5 badniward recursion for blanket models as in Fig. 6—
don'’t arise in the consideration of DBNs [26]. This distinctiis important for large-scale computation because
the hierarchical, tree structure of RCM is highly favorafie parallel computing whereas frontier propagation
methods require serial computations. There are also plartdléhe group renormalization method using decimation
[37], [13], which constructs a multi-scale cascade of ceasale MRFs by a combination of node-elimination and
edge-thinning, and estimates the most probable configarati@ach scale using iterative methods.

2In exact inference methods using junction trees, the benefits of parafigbuting are limited by the predominant computations on the
largest separators, a limitation that RCM avoids through the use of thirmatdary models.
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Fig. 1. lllustration of information projection and the Pythagorean relation.

[11. M ODEL REDUCTION

In this section we focus on the problem of model reductioa,gblution of which RCM employs in the recursive
thinning of cavity and blanket models. In Section IlI-A, wespomodel reduction as information projection to a
family of GMRFs and develop a tractable maximum-entropy métto compute these projections. In Section IlI-C
we present a greedy algorithm that uses conditional mutfatration to select which edges to remove. In our
development we assume that the model being thinned is IMactahis is consistent with RCM in which we thin
models, propagate them to larger ones that are still treectaid then thin again to maintain tractability.

A. Information Projection and Maximum Entropy

Suppose that we wish to approximate a probability distrduti(x) by a GMRF defined on a gragh= (V. ).
Over the familyg of GMRFs onG we selecty(x) to minimize theinformation divergencérelative entropy [38])
relative top:

Dipla) = [ ) 1og E idx >0 @3)

As depicted in Fig. 1, minimizing (3) can be viewed as a “prifetT of p onto §. Many researchers have adopted
(3) as a natural measure of modeling error [25], [36], [29]e Taroblem of minimizing information divergence
takes on an especially simple characterization when theoajppating family § is an exponential family{39],
[35], [40], that is, a family of the formpy(x) o exp{f - #(x)} whered € R¢ are theexponential parameterand
¢ : R" — R? is a vector of linearly independestfficient statisticsThe family is defined by the sét € © for
which [exp{f - ¢(x)}dx < co. The vector ofmoments; = A(¢) = E¢{¢(x)} plays a central role in minimizing
(3). In particular, it can be shown thétc © minimizesD(p||py) if and only if we havemoment matching relative
to §; that is if and only if the expected values of the sufficientistizs that define§ are the same undex
and the original density. This optimizing element, which we refer to as timformation projectionof p to §
and denote byg, is the unique member of the family for which the following Pythagorean relation holds:
D(pllq) = D(pllpg) + D(pzllq) for any ¢ € § (see [35] and Fig. 1). Information projections also have aimam
entropy interpretation [41], [35] in that among all der&fmj € M(p) that match the moments gf relative tog,
pg is the one which maximizes the entropyg) = — [ ¢(x) log ¢(x)dx. Moreover, the increase in entropy frgm
to pg is precisely the value of thmformation lossD(p||pg) = h(pg) h(p).

The family of GMRFs on a graplyy is represented by an exponential family with sufficient sta$ ¢g,
exponential parametetl; and moment parametey given by:

Pg(x) = (X0)vev U (x )UGV U (Xuxv){u v}eE
99 = (hU)UGV U ( Jv U)'UGV U ( Ju,v){u,v}eg
ng = ()A(’U)’UEV U (Pv,v + XU)UGV U (Pu,v + )A{uf(v){u,v}eé' (4)

Note thatfg specifiesh and the non-zero elements df while ng specifiesz and the corresponding subset of
elements inP. These parameters are related by a one-to-onerngap A(fg), defined byP = J~! andx = J~'h,
which is bijective on the image of realizable momeMtG).

Given a distributionp(x), the projection tog(G) is given as follows. Using the distributign we compute the
moments relative t@;, or equivalently, the means,, variancesP, , and edge-wise cross-covariandes, on g.



The information matrixJ of the projection is then uniquely determined by the follegricomplementary sets of
constraints [42], [28]:

I e = Puw, Y(u,v) €& (5)
Jup = 0, Y(u,v) €& (6)

where&* = £ U {(v,v), v € V}. Eq. (5) imposes covariance-matching conditions ayewhile (6) imposes
Markovianity with respect t@. Also, by the maximum-entropy principle, an equivalentreleterization of] is that

P £ J~1 is themaximum entropy completid#3] of the partial covariance specificatidty = (Py.v, (u,v) € £*).
Given J, the remaining moment constraints are satisfied by seltinrgJx. Then,(h, J) is the information form of
the projection taj. Hence, projection to general GMRFs may be solved by a “shifpeojection to the zero-mean
GMRFs and we may focus on this zero-mean case without any fagsnerality. The family of zero-mean GMRFs
is described as in (4) but without the linear-statisticand corresponding parametérand moments:.

B. Maximum-Entropy Relative to a Chordal Super-Graph

We now develop a method to compute the projection to a graplerblgedding this graph within a chordal
super-graph and maximizing entropy of the chordal GMRF exttlio moment constraints over the embedded sub-
graph. This approach allows us to exploit certain tractableutations on chordal graphs to efficiently compute
the projection to a non-chordal graph.

1) Chordal GMRFs:A graph ischordalif, for every cycle of four or more nodes, there exists an e@gehord)
connecting two non-consecutive nodes of the cycle.d(€t) denote the set ofliquesof G: the maximal subsets
C C V for which the induced subgrapfy is complete, that is, every pair of nodes@his an edge of the graph.
A useful result of graph theory states that a graph is chafdahd only if there exists gunction tree a tree
T = (I',&r) whose nodes < I' are identified with cliqueg’, € C(G) and where for every pair of nodes 8 € I'
we haveC, N Cs C C, for all v along the path fromy to 3. Then, each edgéy, 5) € & determines a minimal
separatorS = C, N Cy of the graph. Moreoveny junction tree of a chordal grapf yields thesamecollection
of edge-wise separators, which we denoteS§%). The importance of chordal graphs is shown by the following
well-known result: Any strictly-positive probability digbution pg(z) that is Markov on a chordal grapgh can be
represented in terms of its marginal distributions on thguelsC € C(G) and separator§ € S(G) of the graph as

[Ic pe(zc)
pg(z) = : (7)
o Hsps(l’s)
In chordal GMRFs, this leads to the following formula for theasse information matrix in terms of marginal

covariances:
J=> Pl = > [P5'hv. (8)
c s

Here, [...]y denotes zero-padding to|&| x |V| matrix indexed byV. In the exponential family, this provides
an efficient method to comput®; = A~!(ng). Also, given the marginal covariances of an arbitrary distion
p(z), not necessarily Markov o6, (8) describes the projection pfto §(G). The complexity of this calculation is
O(nw3) wherew is the size of the largest cligde.

2) Entropy and Fisher Information in Chordal GMRFBased on (7), it follows that the entropy of a chordal MRF
likewise decomposes in terms of marginal entropy on theuebgand separators 6f In the moment parameters

of the GMRF, we have
h(ng) =Y ho(ng.) =Y hs(ngs), 9)
c S

wherehe and hg denote marginal entropy of cliques and separators, cordpugizg
hu (ng,) = 3(log det Py (ng, ) + U log 2me). (10)

For exponential families, it is well-known thath(n) = —A~1(n) so that, for GMRFs, differentiating (9) reduces
to performing the conversion (8). Thus, bdtlrg) and Vh(ng) can be computed witd(nw?) complexity.

3This complexity bound follows from the fact that, in chordal graphs, thealver of maximal cliques is at most— 1 and, in GMRFs,
the computations we perform on each clique are cubic in the size of the .clique



Next, we recall that thé&isher informationwith respect to parameterg; is defined

G(ng) £ Epg{Vlogp(z;ng) V" logp(z;ng)} = —VV7h(ng),

whereV denotes gradient with respect #g and the expectation is with respect to the unique elements(G)
with momentsng. Then, G(rg) is a symmetric, positive-definite matrix and also descrilhes rtegative Hessian
of entropy in exponential families. By twice differentiadi (9), it follows that, in chordal GMRFs, the Fisher
information matrix has a sparse representation in termsafjmal Fisher information defined on the cliques and
separators of the graph:

G(ng) = [Ge(nge)lg — Y [Gs(ngs)lg, (11)

c S

where Gy (ng,) £ —VVThy(ng,) is the marginal Fisher information ofi and |...]g denotes zero-padding to
a matrix indexed by nodes and edgesdofFrom (11), we observe that the fill pattern @{ng) defines another
chordal graph with the same junction tree @sbut where each cliqgu€’ € C(G.) maps to a larger clique with
O(|C]?) nodes (corresponding to a full sub-matrix @frg) indexed by nodes and edges@f). For this reason,
direct use ofG(rg), viewed simply as a sparse matrix, is undesirablg dontains larger cliques. However, we can
specify implicit methods that exploit the special structure(fto implement multiplication by eithe: or G~}
with O(nw?) complexity. Observing thati(ng) = g% represents the Jacobian of the mapping fmgyrto 65, we
can compute matrix-vector product#¥g = G - dng for an arbitrary inputdng (viewed as a change in moment
coordinates). Differentiating (8) usingP;,') = —P,'dP;P;;' we obtain:

dJ ==Y [PcldPcP v + Z P ldPsPgt (12)
S

Similarly, we can computéng = G~!-dfg by differentiatingng = A(fg). In appendix A, we summarize a recursive
inference algorithm, defined relative to a junction tregjothat computes)g given g and derive a corresponding
differential form of the algorithm that computesg given dfg. These methods are used to efficiently implement
the variational method described next.

3) Maximum-Entropy OptimizationGiven a GMRFp on G, we develop a maximum-entropy (ME) method to
compute the projection to an arbitrary (non-chordal) stdph S. Let G’ be a chordal super-graph ¢f and let
R =&(G")\ £(S) such thatyg: = (ns,nr). We may compute)g (p) using recursive inference on a junction tree
of G’ (see Appendix A). To compute the projection$ we maximize entropy in the chordal GMRF subject to
moment constraints over the sub-graphThis may be formulated as a convex optimization problem:

Hgm f(nr) £ —h(ns,nr)
st. (ns,nr) € M(G) (13)

Here,ng: € M(G') are the realizable moments of the GMRF defineddrt Starting fromné,) = ng (p), we
compute a sequenoék ng,ng)) using Newton’s method. For eadh this requires solving the linear system

Gl An%) =~ (14)
whereG( ) = = VVTf is the principle sub-matrix o@(né, ) corresponding tR ande(k = V[ is the corresponding
sub-vector ofe(,) = A—l(ngf)) computed using (8). We then se k+1) (k) + AAn%), where A € (0,1]

is determined by back-tracking line search to stay withit{G’) and to msure that entropy is increased. This
procedure converges to the optimgl, = (s, %), for which the corresponding exponential parameters fgatis
0% = 0. Then, 8% is the information projection t&.

Finally, we discuss an efficient method to compute the Newtep: 3t the widthw of the chordal graph is very
small, sayw < 10, we could explicitly form the sparse matrixz and efficiently solve (14) using direct methods.
However, this approach had(nw%) complexity, which is undesirable for larger valueswof Instead, we use an
inexact Newton’s step, obtained bgpproximatesolution of (14) using standard iterative methods, foransg,

4In the chordal graplg’, the condition thatyg: is realizable is equivalent B (ng,,) = 0 for all C € C(G'), which can be verified with
complexity O(nw?). Thus,9t(G’) is convex because the set of positive-definite matrices on each cliqoensxc



preconditioned conjugate gradients (PCG). Such methodsabneequire an efficient method to compute matrix-
vector productsGx - Anr, which we can provide using the implicit method, based or),(fidt multiplication by
G. Also, to obtain rapid convergence, it is important to pdavian efficientpreconditioner which approximates
(Gr)~!. For our preconditioner, we usg —!)z,> implemented using an implicit method for multiplication by
G~! described in Appendix A. In this way, we obtain iterative huets that haved (nw?) complexity per iteration.
Using the PCG method, we find that a small number of iteratioymidally, 3-12) is sufficient to obtain a good
approximation to each Newton step, leading to rapid coraresg in Newton’s method, but with significantly less
overall computation for larger values af than is required using direct methods.

C. Greedy Model Thinning

In this section, we propose a simple greedy strategytHoming a GMRF model. This entails selecting edges
of the graph which correspond to weak statistical inteoactibetween variables and pruning these edges from the
GMRF by information projection. The quantity we use to meadhe strength of interaction betweep andx,
is the conditional mutual informatior§38],

N p(Xva’X\{u,v}) } N 1 Ji,v

Iu,v(p) Fr {log p(XU|X\{u,v})p(xv|x\{u,v}) 2 tog (1 Ju,qu,v> =0,
which is the average mutual information betweenandx, after conditioning on the other variablesy, ;. In
GMRFs, we can omit edgéu, v} from G, without any modeling error, if and only i, andx, are conditionally
independent givem, ,, .}, that is, if and only if7, ,(p) = 0. This suggests using thealue of I,,,(p), which is
tractable to compute, to select edgesv} € £ to remove. To motivate this idea further, we note that(p) is
closely related to the information loss resulting from reing edge{w, v} from G by information projection. Let
G\ {u,v} = (V,€\ {u,v}) denote the sub-graph &f with edge{u, v} removed and lefC denote the complete
graph onV. Then, observing thaf \ {u,v} is a sub-graph ofC \ {u,v}, we have, by the Pythagorean relation
with respect top\ u,v}

D(pllpg\fupy) = D@lre\fuvy) + D@x\fuo 126\ fu0})
L (P) + D(prc\ fuo} PG\ fu,0})
> Iy ()

where we have use®(p||px\fuvt) = Luw(p) @nd D(p\fu,o} IP6\{uwy) = 0. Thus, I, ,(p) is a lower-bound
on the information losD(p||pg\ {u,s})- Moreover, forp € F(G) having a small value of, ,(p), we find that
D(pi\ fuv} IPG\ fuvy) t€Nds to be small relative td,.(p) so thatl,,(p) then provides a good estimate of
D(pl|pg\{u,v})- In other words, removing edges with small conditional nalifaformation is roughly equivalent to
picking those edges to remove that result in the least mugleiror.

We use the following greedy approach to thin a GMRF definedGorLet § > 0 specify the tolerance on
conditional mutual information for removal of an edge. Wengpuite I, ,,(p) for all edges{u, v} € £ and select a
subset of edge® C & with I, ,(p) < 0 to remove. The information projection to the sub-grapk (V,£\R) is
then computed using our ME method as described in Sectidd (telative to a chordal super-graph @f. Because
the values off, ,, in this information projection will generally differ fromheir prior values, we may continue to
thin the GMRF until all the remaining edges ha¥ig, > 4. Also, by limiting the number of edges removed at
each step, it is possible to take into account the effect mioxeng the weakest edges before selecting which other
edges to remove, which can help reduce the overall infoondtss.

IV. RECURSIVECAVITY MODELING

We now flesh out the details of RCM. In Section IV-A, we specife thierarchical tree representation of the
GMRF that we use, and in Section IV-B, we defimformation formsand the three basic operations we use:
composition, elimination and model reduction. These forms @perators are the components we use to build our

To motivate this preconditioner, we note thai)~* is given by theSchur complemeniiz — Hr,sHs'Hs,z with respect tol £
G = cov{¢(x)}. Hence, our preconditiondirz = (G~ ') arises by neglecting the intractable teHrk,ngng,R, which is a good
approximation if the correlatiofils = is weak relative tddz andHs.
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Fig. 2. (a) The tre&’ = (T, &r) based on (b) the collectiatr of nested subsets of vertic&s of the underlying grapld.

two-pass, recursive, message-passing inference algogth the hierarchical tree. First, as described in Section
IV-C, we perform an upward pass on the tree which construmtfycmodels. Next, as described in Section IV-D,
we perform a downward pass on the tree which constructs etankdels and also estimates marginal variances
and edge-wise covariances in the GMRF. Lastly, in Section Iv#& describe a hierarchical preconditioner, using
the cavity models computed by RCM, and an iterative estonatigorithm that computes the means for all vertices
of the GMRF.

Before we proceed, we define some basic notation with respebietgraphG = (V, ) describing the Markov
structure ofx. GivenU C V, letU’ £ V\U denote the set complement@fin V and letoU = {v € U'|(u,v) € £}
denote theblanketof U in G. Also, 0U’ = 9(U’) is the surfaceof U andU° = U \ 9U’ is its interior. These
definitions are illustrated in Fig. 3(a), (b) and (c).

A. Hierarchical Tree Structure

We begin by requiring that the graphical model is recurgivdisected into a hierarchy of nested subfields as
indicated in Fig. 2. First, we describe a “bottom-up” congirt Let the set” be partitioned into a collectiof
of many small, disjoint subsets chosen so as to induce lamelier, connected subgraphsdrover which exact
inference is tractable. These small sets of vertices aregsgely mergedinto larger and larger subfields until only
the entire sel/ remains. Only adjacent subfields are merged so as to induceect®d subgraphs. Also, merging
should (ideally) keep the diameter of these connected apbgras small as possible. To simplify presentation only,
we assume that subfields are merged two at a time. This genaratéiection/ C 2" containing the smallest sets
in £ as well as each of the merged sets up to and inclutfinglternatively, such a dissection can be constructed in
a “top-down” fashion by recursively splitting the graphdamesulting sub-graphs, into roughly equal parts chosen
so as to minimize the number of cut edges at each step. Fanoestin 2D lattices this is simply achieved by
performing an alternating series of vertical and horizbotss.

In any case, this recursive dissection of the graph definegeadtr= (T',&r), in which each nodey € T’
corresponds to a subskt, € U/ and with directed edgesr linking each dissection cell to it immediate sub-cells.
We let () denote theparentof node~ in this tree. Also, thechildren of  are denotedr—1(vy) = {a(v), 8(7)},
or more simply{a, 3} wherey has been explicitly specified. The following vertex sets afendd for each/, € U
relative to the graply:

B, £0U,, R,= ou,. (15)

As seen in Figs. 3(a), (b) and (c), the blankgt is the “outer” boundary ot/ while the surfacek, is its “inner”
boundary, and either serves as a separator betWeemd UQ. Also, the following separators are used in RCM:

SWéRaURﬁ, SaéB'yURg, SgéByURa. (16)

The separatof”, used in the RCM upward pass, is the union of the surfaceseofwtb children of a subfield (see
Fig. 3(d) and (e)). The separatosg and Sg, used in the RCM downward pass, are each the union of its fgren
blanket and its sibling’s surface (see Fig. 3(d) and (f)).

These separators define a Markov tree representation, wipeaeto 7', of the original GMRF defined o
[24]: For each leafy of T' define the state vector, = xy,. For each non-leaf let x, £ xg~. By construction,
eachS? is a separator of the graph, that is, the subfiélds Uz and U, are mutually separated by”. Hence, all
conditional independence relations required by the Martkeg are satisfied by the underlying GMRF. However,
we are interested in the large class of models for which eixdetence on such a Markov tree representation is
not feasible because of the large size of some of the separdts discussed in Section II-C, we instead perform
reduced-ordemodelingof these variables, corresponding to a thinned, tractafslphgcal model on each separator.
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Fig. 3. lllustrations of the graply of a GMRF and of our notation used to indicate subfields: (a) the subffieléind its complement

U’; (b) the blanketB, = dU,; (b) the interiorUs; and surfaceR, = dU’; (d) partitioning ofU,, into sub-cellsU, and Ug; (e) separator
S? = Ra U Rg; (f) separatorS, = Rz U B-.

B. Information Kernels

In the sequel, we leth, Ji7), whereU ¢ V, hy € RVl and J; € RIVIXIUL is symmetric positive definite,
represent thénformation kernelfy; : RIYl — R, defined by:

1
fo(xushy,Ju) = eXp{_ﬁngUXU +hixy} (17)

The subscriptU indicates the support of the information kernel, and of thetriceshy and Jy;. Generally, fir
corresponds (after normalization) to a density over théabéesx;; parameterized by andJy. In RCM, the set

U is typically a separator of the graph, ahg andJy are approximations to the exact distribution in question so
that J;; is sparse. We also use matricksy,, whereU, W C V andJyw € RIVIXIWI to represent the function

fow v, xwiJuw) = exp{—x{ Juwxw}, (18)

which describes the interaction between subfiélgs/. We adopt the following notations: Lét;;[IW] denote the
sub-vector ofh;; indexed byW C U. Likewise, Jy[W1, Ws] denotes the sub-matrix dfy indexed byW; x W,
and we writeJ [W] = Jy[W, W] to indicate a principle sub-matrix.
Given two disjoint subfield modelgh,, Ji,) and (hy,,Jy,) and the interactionly, 7, we let (hy, Jy) =
(hy,, Ju,) @ Ju, v, @ (hy,, Ju,) denote the joint model oty = U; U U, defined by
hys Ju, Juu
hy = ! = ! e 19
v (hUz )’ v <J51,U2 Ju, > (19)
which corresponds to multiplication of information kermer addition of their information forms.
Given an information fornthy, Jy) andD C U to be eliminated, we leths, Js) = Ils(hy, Ju) = I\ p(hy, Ju)
denoté the operation ofGaussian Eliminatio{GE) defined byS = U \ D and

hg = hy[S] - Ju[S, D)Jy[D] 'hy (D]
Js = JulS] = JulS, DJy[D] Iy (D, 9] (20)

The matrixJ g is the Schur complementf the sub-matrixJi7[D] in Jy. Straightforward manipulations lead to the
following well-known result:

(Js)™t = (I;H[S] and (Jg) ths = (J; hy)[S). (21)

Thus, the information forn{hg, J5) corresponds to the marginal ghwith respect to the modelhs, Ji/). Also,
GE may be implementececursivelyas follows: given arelimination order(dy,...,d,) of the elements inD,
compute (20) aslg4, --- 114, (U, hy, Jy), that is, by eliminating one variable at a time. Note alsd #dy those

®Two notations are introduced, as in some caSes U \ D is given explicitly, while in others it is only implicitly specified in terms of
U and D.
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Fig. 4. Initialization of a cavity model for a small subfield, € £, corresponding to a leaf df’: (a) the initial subfield model/[U,],
a sub-matrix ofJ; (b) the cavny modeIJR = HJ[ | after Gaussian elimination of the interior variableé$ = U, \ R; (c) the final
thinned cavity model]RW = H(;JR deflned on the surfac®, of subfieldU, .

entries ofhy andJy indexed byoD are modified by GE. Hence, GE isl@calizedoperation within the graphical
representation of the GMRF as suggested by Figs. 4(a) and H{wever, eliminatingD typically has the effect
of causingjg[aD] to become full as shown in Fig. 4(b). This creationfitif can spoil the graphical model so that
recursive GE becomes intractable with worst-case cubicptexity in dense graphs.

Given an information matriX;; we denote the result shodel-order reductiomy J;; = II5J;7. The model reduc-
tion algorithm in Section Il requires specifying a parametavhich controls the tolerance on conditional mutual
information for the removal of an edge. The procedure theardghes which edges in the graph corresponding to
Jy to remove and determines the projection to this thinnedhgrapis projection preserves variances and edge-
wise cross-covariances on the thinned graph, which is atgrivtoll-J; = I1oJy for each cliqueC ¢ U of the
thinned graph.

In the following sections, we first develop our two-pass aginate inference procedure, focusing on calculation
of just the information matrices, which are all independgfit. Then, we provide additional calculations involving
h andx, presented as a separate two-pass procedure which thers sena preconditioner in an iterative method.

C. Upward Pass: Cavity Model Propagation

In this first step, messages are passed from the leaves oéthe tip towards the root’. These upward messages
take the form ofcavity modelsencoding conditional statistics of variables lying in thefaces of given subfields.
To be precise, each cavity model, represented by an infamatatrix ij, approximates a conditional density
p(xg, [xp, = 0) so thatlg, is a tractable, thin matrix.

1) Leaf-Node Initialization: For eachU, € £ we initialize a cavity model as follows: We begin with the
local information matrixJ[U,] as deplcted in Fig. 4(a). This specifies the conditional dem{uty; ]xB =0) x
f(xv,;0,J[U,]). We then eliminate all variables within the interior(@f by Gaussian ellmlnatlon]R = HR J[U,].

This has the effect of deleting all nodes in the interiorlaf and updating the matrix parameters on the surface.
As indicated in Fig. 4(b), this also induces fill within the infeation matrix. To ensure tractable computations in
later stages, we thin this mode];qv = ﬁ(;ij, yielding a reduced-order cavity model, as shown if Fig. 4{a)
each subfield/, € £. Then we are ready to proceed up the tree growing larger cendiyels from smaller ones.

2) Growing Cavity Models:Let U, C V' be a subfield ir/ where we have already constructed the two cavity
models forR, and R as depicted in Fig. 5(a). Then, we construct the cavity modelUfoas follows:

a) Join Cavity Models:First, we form the composition of the two sub-cavity modelsnakcated in Fig. 5(b):
Jgv = Jp, ® J[Ra, R3] © Jr,. Note thatS” = R, U Ry is a superset of,.

b) Variable Elimination: Next, we must eliminate the extra variabl®s = S \ R,, to obtain the marginal
information matrixjpw = ﬂRngw. To ensure scalability, rather than eliminating all valéghat once, we eliminate
variables recursively beginning with those farthest fréma surface and working our way towards the surface. This
is an efficient computation thanks to model reductions pavéat previously inU, and Ug.

¢) Model Thinning: This preceding elimination step induces fill “across” the tayFig. 5(c)). Hence, to
maintain tractability as we continue, we perform modelesneeduction yieIding~]R7 = fI(;jRW which is the desired
reduced-order cavity model represented in Fig. 5(d). Thigeption step requires that we compute moments of the
graphical model specified bi/Rw. Thanks to model thinning in the subtree Bfrooted aty, these moments can
be computed efficiently.
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Fig. 6. Recursive construction of a blanket model: (a) the caV|ty m(fﬁgl of the sibling subfield/z and the blanket modewa of the
parent (b) joined cavity/blanket modédk, = JR[, @ J[Rg, B,] ® JBW defined on the separatcﬁ‘a = R@ U By; (c) the blanket model
JBw = ILJs, after Gaussian elimination of variables, \ By; (d) the final thinned blanket modelz, = I15.J5, defined on the blanket
B, of subfieldUs,.

D. Downward Pass: Blanket Model Propagation

The next, downward pass on the tfEénvolves messages in the form lofanket modelsthat is, graphical models
encoding the conditional statistics of variables lyinghe blanket of some subfield. Each subfield’s blanket model
is a concise summary of the complement of that subfield suffié@nnear-optimal inference within the subfield.
Specifically, the blanket modéIBv is a tractable approximation of the conditional mogéts [xr = 0).

1) Root-Node Initialization:Note that the blanket o¥ is the empty set so that a blanket model is not required
for the root of 7. As we move down to the childrefi, ) and Ug(, we note thatB, ) = Rse) and, hence, a
blanket model for/,, (o) is given by the cavity model fot/s(q), which was computed in the upward pass. Hence,
we already have blanket models 6}, ) and Uy and are ready to build blanket models for their descendents.

2) Shrinking Blanket ModelsSuppose that we already have the blanket model/foas represented in Fig. 6(a).
Then, we can construct the blanket model for the childas follows:

a) Joining Blanket and Sub-Cavity Moddtirst, we form the composition of the blanket model definedzn
with the cavity model defined oR; (from the sibling ofa) as shown in Fig. 6(b\s, = Jg, © J[B,, R] ® Jg,.
Note thatS, = B, U Rg is a superset of3,.

b) Variable Ellmlnanon Next, we eliminate all variables Lﬁ)7 = 5.\ Ba, yielding JB = HB JS To ensure
scalable computations, we again perform variable elifonatecursively, starting with vertices farthest from the
blanket and working our way towards,. The result is depicted in Fig. 6(c).

c) Model Thinning: Lastly, we thin this resulting blanket mode]B = H5JB yielding our reduced-order
blanket model for subfield’, (Fig. 6(d)). The blanket model fav; is computed in an identical manner with the
roles of « and 3 reversed.

3) Leaf-Node Marginalization:Once we have constructed a blanket model for each of the eshalibfields
U, € L, we can join this model with the conditional model for the lesed subfield (that is the model used to
seed the upwards pass), to obtain a graphical model appatigimof the (zero-mean) marginal densji@cgw) on

U, £ U, U B,, given in information form byjl—,w = JlU,) @ JU,,B,] @ 337. Inverting each of these localized
models, that is, computinBUW = (jgw)—l, yields variances of all variables and covariances for esitde ofG.

E. An RCM-Preconditioner for lterative Estimation

In the preceding sections, we have described a recursiveithlign for constructing a hierarchical collection of
cavity and blanket models, described by thin informatioririoes. In this section, we describe how to extend these
computations to compute the estimatesolving Jx = h. We begin by describing a two-pass algorithm, based
on the cavity models computed previously, which computegsproximation ofk, and then describe an iterative
procedure, using the two-pass algorithm gsreconditioner that iteratively refines the estimate.
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1) Upward-Pass:We specify a recursive algorithm that works its way up the,t@mputing a potential vector
hr at each node < I' of the dissection tree. Ler]thw denote the cavity models computed previously by the RCM
upward pass. For each leaf-node, we sol#.,] - x;, = h[U,] for xy, and then computép, = Jg, - xu,. At
each non-leaf node, we compuig_as follows:

a) Join: Form the composite modéhs-, Js-) = (hg,,Jr.) ®J[Ra, Rs) @ (hr,, Jr,), whereS’ = R,URg,
by joining the two cavity models from the children.

b) Sparse SolveGiven this joint model, we solvdgs- - xg+ = hg+ using direct methods, which is tractable
becausel g, is a thin, sparse matriX.

c) Sparse Multiply: Finally, we compute the potential vectbr; = J R, - xsv[R,], which is a tractable
computation becausiaRw is sparse.

2) Downward-Pass (Back-Substitutiordnce the root node is reached, we have the information fagn Jso) =
(DR JRu)) @ J[Ra0), Rpo)] @ MRy s JRae,) @t the top-level separator of the dissection tree, whichnis a
approximate model for the marginal distributipfixso). Hence, we can compute an approximation for the means
Xgo0 by solvingJgo - Xg0 = hgo. Conditioning on this estimate, we can then recurse baclkhdbe tree filling in the
missing values ok along each separator, thereby propagating estimates dmunete. In this downward pass, each
node below the root of the tree receives an estintate of the variables in the surfack, of the corresponding
subfield. Again using the modéhs-, Js- ), formed by the upward computations, we interpolate intostiefield,
computingxp- where DY = S7\ R,, by solution of the linear system of equations

JD'Y . )A(D'y = hD’v
Jpv & Jg:[D]
hpy 2 hg[DY] = Js:[D7, R - %, . (22)

The estimatexp- is computed with respect to the approximation igkp-|Xr,) ~ f(xp-;hp~,Jp~) (after
normalization), which is approximate because of the mddehing steps in RCM. Once the leaves of the tree are
reached, the interior of each subfield is interpolated shhgjléhus yielding a complete estimate

3) Richardson Iteration:The preceding two-pass algorithm may be used to compute amapate solution of
Jx = b for an arbitrary right-hand sidb. The resulting estimate is linear lmand we denote this linear operator
by M. UsingM as a precondition€r we compute a sequence of estimafe&”} defined byx(®) = 0 and

Let p denote the spectral radius bf- MJ. If p < 1 thenx(™ converges ta 2 J~'h with £ — x| < p™|%|.
For smalld, this condition is met and we achieve rapid convergence dactitrect means.

V. APPLICATIONS INREMOTE SENSING

In this section we develop two applications of RCM in remagassng: (1) interpolation of satellite altimetry
measurements of sea-surface height, and (2) estimatiomeo$urface of a large salt-deposit beneath the Gulf of
Mexico. The purpose of these examples is to demonstrate @islt $tales well to very large problems while yielding
estimates and error covariances that are close to thosevthed have resulted if exact optimal estimation had been
performed instead. Although the specific statistical modskd in these examples are perhaps over-simplified, the
results that follow (which include space-varying measwgsirdensities and hence space-variant estimation errors)
do serve to demonstrate the applicability of RCM to very daspatial estimation problems.

We use a sparse Cholesky factorizationJgf and back-substitution based hg~. Also, some computation can be saved if we use an
elimination order beginning witts” \ R, because we only need to compute, [R,] in the back-substitution.

8To implementM b efficiently, we pre-compute and store calculations that do not depehdFar instance, we compute a sparse Cholesky
factorization for each/r., using a low-fill elimination order. This leads to an extremely fast precomditibecause only back-substitution
steps are required each time we applyto a differentb vector.
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A. Model Specifications
Throughout this section, we consider GMRFs of the form

p(x,y) ocexp{_l <||DXH2 4 Hy—SXHQ)} (24)

2 o2 o5
wherex € R" represents the vector of field values at the vertices of a ae@D lattice andy € R™ is a vector of
local, noisy measurements of the underlying field at an ileegeet of points scattered throughout the field. Here,
|Dx]|? represent our prior fox, which serves to regularize the field, and the data-fidelitntey — Cx||? represents
our measurement model. We consider two prior models comymased in image-processing. The thin-membrane
(TM) model is defined such that each reyw corresponds to an edde, v} € £, and has two non-zero components:
di,. = +1 andd;, = —1. This gives a regularization term

IDx* = > (wu — @) (25)
{u,v}e€
that penalizes gradients, favoring level surfaces. The-gildte (TP) model is defined such that each raw
corresponds to a vertex € V' and has non-zero components, = 1 andd,, = —m for adjacent vertices

u € N(v). This gives a regularization term
2

HDXH2 = Z Ly — |N%v)_\ Z Ty (26)

veV u€eN (v)

that penalizes curvature, favoring flat surfaces. In gendrallocations of the measuremenptslefines an irregular
pattern with respect to the grid defined farMoreover, the location of individual measurements malydatween
these grid points. For this reason each measuremeist modeled as the bilinear interpolatiep- x of the four
nearest grid points to the actual measurement locatiomgt@d by zero-mean, white Gaussian noige= c;-x+uv;
wherev; ~ N(0,03). The posterior density(z|y) may be expressed in information form with parameters
T T T
Db Co Oy

o2 o3 o5

Thus, the fill-pattern of/ (and hence the posterior Markov structurexpis determined both b D andC”C. In

the TM model,D”D has non-zero off-diagonal entries only at those locatimrsesponding to nearest neighbors
in the lattice. In the TP model, there are also additional eatians between pairs of vertices that are two steps
away in the square lattice, including diagonal edges. Binfdr each measuremeni, there is a contribution of
crcl to J, which creates edges between those four grid points cldeetite location of measuremeht This
results in a sparsé matrix where all edges are between nearby points in thedatiience, we can apply RCM
to the information mode(h, J) to calculate approximations of the estimatg$y) = E{x,|y} and error variances
62 = E{(x, — %,(y))?|y} for all verticesv € V and error covarianceB{(x, — %.(y))(x, — %,(y))} for all edges
{u,v} € €. In Appendix B, we also describe an iterative algorithm ttneate the model parametess ando,.

B. Sea-Surface Height Estimation

First, we consider the problem of performing near-optimdérpolation of satellite altimetry of sea-surface
height anomaly (SSHA), measured relative to seasonal, sga@nt mean-sea levélWe model SSHA by the
thin-membrane model, which seems an appropriate choicefagars a level sea-surface. We estimate SSHA at
the vertices of ar800 x 2400 lattice covering latitudes betweeh60° and a full 360° of longitude, which yields
a resolution of%O in both latitude and longitude. The final world-wide estimat@sl associated error variances,
obtained using RCM with§ = 10~* and model parameters. ~ lcm and o, ~ 3.5cm, are displayed in Fig. 7.

In this example, RCM requires about three minutes to executduding run-time of both the cavity and blanket
modeling procedures as well as the total run-time of theatites procedure to compute the means. About 30
iterations are required to obtain a residual effbr- Jx(*)| less thanl0~*, where each iteration takes 2-3 seconds.

9This data was collected by the Jason-1 satellite over a ten day period begit®ity2004 and is available from the Jet Propulsion
Laboratoryht t p: / / poodaac. j pl . nasa. gov.
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Fig. 7. Estimated sea-surface height anomaly and space-variadasiasfeviation of estimation error computing using RCM.

C. Salt-Top Estimation

Next, we consider the problem of estimating the “salt-tdpat is, the top surface of a large salt deposit located
several kilometers beneath the sea-floor somewhere in theoGMexico. The data for this estimation problem,
provided courtesy of Shell International Exploration, Immnsists of a large set of “picks” chosen by analysts while
viewing cross-sections of seismic sounding data. Henasetlpicks fall along straight line segments in latitude
and longitude, and it is our goal to interpolate betweendtpmsnts. For this problem, we use the thin-plate model
for the surface of the salt-deposit, which allows for untlates typically seen in the salt-top, with &0 x 800
lattice at a resolution of0 feet and with model parametess =~ 12 feet ando, ~ 35 feet. The final estimates and
error variances are shown in Fig. 8. These results were obtaisidg RCM with a tolerance af = 10~4, which
required about five minutes to run, including the total tireguired for iterative computation of the means. The
run-times for the TP model are somewhat slower than for the TMehbecause the Markov blankets arising in
the TP model are twice as wide as in the TM model, so the cavitybdamket models are more complex.

VI. CONCLUSION

We have presented a new, principled approach to approximégeence in very large GMRFs employing a
recursive model reduction strategy based on informatiaortitic principles and have applied this method to
perform near-optimal interpolation of sea-surface siégedlitimetry. These results show the practical utility oé th
method for near-optimal, large-scale estimation. Severssiple directions for further research are suggestediby th
work. First, the accuracy of RCM in applications such as thastrated here provides considerable motivation for
the development of a better theoretical understanding@dturacy and stability. For instance, if it were possible t
compute and propagate upper-bounds on the informatiomgdimee in RCM this would be very useful and may lead
to a robust formulation. Although we have focused on exampteng Gaussian prior models, we expect RCM wiill
also prove useful in non-linear edge-preserving methodk ag [44]. Although these methods use a non-Gaussian
prior, their solution generally involves solving a sequeré Gaussian problems with an adaptive, space-variant
process noise. Hence, RCM could be used as a fast compuatagingine in these methods. We also are interested
to apply RCM to higher-dimensional GMRFs, such as arise isngiei and tomographic 3D estimation problems or
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Fig. 8. Estimated salt-top and space-variant standard deviation of estingatir computing using RCM.

for filtering of dynamic GMRFs. We anticipate that it will be imqant to take advantage of the inherently parallel
nature of RCM to address these computationally intensiydiegiions. Another direction to explore is based on the
rich class of multi-scale models, such as models havingifgritt or pyramidal structure. For example, the work in
[11] demonstrates the utility and drawbacks of using m@gielution models defined dreesto estimation of ocean
height from satellite data. Such models allow one to captmg-distance correlations much more efficiently than
a single-resolution nearest-neighbor model, but the treetsire used in [11] leads to artifacts at tree boundaries,
something that RCM is able to avoid. This suggests the ideanbércing models as in [11] by including new
edges that eliminate these artifacts but that introducéesyioto these multi-resolution graphical models. However
if such models can be developed, RCM offers a principledabta approximate inference algorithm well-suited for
solution of such hierarchical, multi-resolution modelsndtly, while the specifics of this paper concern Gaussian
models, the general framework we have outlined should applye generally. This is especially pertinent for
inference in discrete MRFs where computation of either thegimal distributions or the mode grows exponentially
in the width of the graph [6], [10], which suggests develgpaounterparts to RCM for these problems.

APPENDIX
A. Recursive Inference Algorithm

In this appendix we summarize a recursive algorithm for cating the moments)g = A(6g) of a zero-mean,
chordal GMRF. Also, by differentiating each step of this ggdure, we obtain an algorithm to compute the first-
order change in moment parameterg due to a perturbatiodfg. The complexity of both algorithms i©(nw?),
wheren is the number of variables and s the size of the largest clique. These algorithms are ussdiasoutines
in the model-reduction procedure described in Section HIRICM, these methods are only used for thin cavity
and blanket models and are tractable in that context.

Let T = (I',&r) be a junction tree of;. We obtain a directed version @f by selecting an arbitrary clique to be
the root node and orienting the edges away from the root. &cin aon-root node, let () denote its parent. We
split each clique”’, into a separatof, = C., N Cy(,y and the residual sk, = C, \ Cr(,). At the root, these are
definedS, = 0 and R, = C,. Now, we specify our recursive inference procedure. Thetitpuhis procedure is
the sparse matrid, which is defined over a chordal graph and parameterizeg;byhe output is a sparse matrix
P, defined on the same chordal graph, with elements specifieg bin the differential form of the algorithm, we
also have a sparse inpdf and sparse outputJ, corresponding telfg anddng.

1) Upward Pass:For each node € I' of the junction tree, starting from the the leaves of the &red working
upwards, we perform the following computations in the orsleown:

Q= (IR
Ay = —Qy-J[Ry, 5]
ISy — IS+ ISy, Byl - Ay
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In the differential form of the algorithm, we also compute:

dJy = —Q,-dJ[R,] - Q,
dJy = —(Qy - dJ[R,] +dJy - J[Ry])
dJ[S,] « dJ[S,] +dI[Sy, Ry] - Ay + J[Sy, R,] - dJ,
The upward pass performs Gaussian elimination.iAt each step, the principle sub-matricesJaéinddJ indexed
by S, are overwritten, which propagates information to the atw&ssof node~ in the junction tree. AlsoA,
and Q, specify an equivalent downward modefR,| = A, - z[S,] + w, wherew, ~ N (0, Q). This downward
model is re-used in the downward pass.
2) Downward Pass:For each nodey € T" of the junction tree, starting from the root node and workéayvn
the tree, we perform the following calculations at each nedd the dissection tree:
PRy, S,] — A, -P[S,]
P[Sy, Ry] < PT[R’Y’S’Y]
PR, « P[R,,S,]- AT +Q,
In the differential form of the algorithm, we also compute:

dJ[R,,S,] « dJ, -P[S,] + A, -dJ[S,]
dJ[S,, R, « dJT[R,,S,]
dJ[R,] — dJ[R,,S,]- AT+ P[R,, S,] - dJT + dJ,

B. Parameter Estimation

We describe the expectation-maximization (EM) algorithrb] [@e use for parameter estimation in both models
described in Section V. These are exponential family modethefform

po(x,y) o< exp{f1¢1(x) + O202(x,y)}
¢1(x) = 3 (IIDx]* + €[|x]1?)

¢2(x,y) = 3lly — Cx]|? (27)
where ¢; is the regularization terfd and ¢, is the data-fidelity term. We wish to select the parameters
(61,02) = (0_12, 02) to maximize/(0) = [ py(x,y)dx for a given set of observations The EM algorithm is an
iterative procedure that converges to a local maximé&@f starting from an initial guesé®). Fort =1,2,..., we

alternate between (E-step) computing the conditional masngh 2 Ey.-1 {¢[y} giveny andg*~1 and (M-step)
selecting the next parameter estimaté to solve the equation&y. {¢} = n®. In our model, the conditional
moments are

1) = 61(®) + & ((DPODT) + et (PV))
ny) = ga(%,y) + 3tr(CPOCT) (28)
wherex®) = E{x|y} andP® = cov(x|y) are computed gives andd*~1). Due to sparsity oD, it is tractable to

computeDx® and only certain sub-matrices Bf*) are needed to compute(DP(t)DT). For instance, in the TM
model we have

tr(DPUDT) = Z dfPWd, = Y (PY), + P, — 2P,
{u,v}e€

YHere, to simplify analysis, we add an additional regularization téxii¥ with relative weighte > 0, which can be made arbitrarily
small. This insures thai(x) is non-singular, with invertible information matrixf; (D™D + €I,,).
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which only requires computation of variances and edge-ags@riances. Similarly, because each measurement only
depends on a few componentsxgfthe matrixC is sparse and it is tractable to comput&*) andtr(CP®"CT).
To solve the M-step, we note that
E{¢1} = tr((DTD + €I,,)cov(x))
tr((DTD + €I,,)(—6,(DTD + €I,)) ™)

= —n91_1
wheren is the dimension ok. By similar analysis,E{¢2} = —megl wherem is the number of measurements.
Thus, the solution for the M-step is " m
0 — —— and6l = - (29)
(t) (t)
Ui 2

which, together with (28), specifies the EM algorithm. The EM &t requires computation of conditional
variances and edge-wise covariances at each iteratiorce{dasimple estimation methods that only compute the
meansx are inadequate for parameter estimation. RCM also compapesoximate variances and edge-wise
covariances and is therefore well-suited for implementangpproximateEM procedure for models where direct
methods are intractable. This approach can be used to ol#eampter estimates in the applications considered in
Section V.
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